
Qt Programming Course
Documentation

Versión 1.0

Miguel Menéndez Carrión

12 de octubre de 2021

Curso de Qt

1. Introducción a Clickable 1

2. Introduction 13

3. Web App - Basic 19

4. QML App - Basic 35

5. QML App - Format 45

6. QML App - Events 65

7. QML App - Database access 79

8. QML App - Charts 91

9. Compilación de la documentación 103

10. Ubuntu SDK (Legacy) 105

11. Índices y tablas 129

I

II

CAPÍTULO 1

Introducción a Clickable

El código fuente es el ADN de una aplicación. Incluye una serie de instrucciones que al ejecutarlas permite que se
realicen múltiples funciones. Por ejemplo, cuando abrimos un navegador Web como Firefox, el código fuente le indica
como tiene que descargar una página Web o la forma en la que tiene que mostrarla. Para que esas instrucciones,
que están definidas en un archivo de texto, se puedan ejecutar en una aplicación es necesario compilarlas. Con la
compilación se traducen las instrucciones en código máquina que puede ejecutar directamente el ordenador. El código
máquina varía dependiendo del procesador que ejecute la aplicación. Podemos distinguir por tanto varias arquitecturas.
En escritorio tenemos i386 / AMD64. Con los dispositivos móviles tenemos en la mayoría de los casos, arquitectura
ARM. Para hacer todo el proceso usaremos Clickable.

Hemos visto que el compilador traduce el código fuente a código máquina. Un compilador que se ejecute en un
ordenador va a generar una aplicación con la misma arquitectura. Directamente no puede generar una aplicación para
otra arquitectura como por ejemplo ARM. En estas condiciones, ¿cómo podemos compilar una aplicación para ARM
si usamos un ordenador de escritorio? La solución reside en el uso de contenedores. A efectos prácticos, el contenedor
permite ejecutar aplicaciones de otra arquitectura en el ordenador.

Por lo tanto, tendremos un contenedor con todas las herramientas necesarias para compilar una aplicación. Le pasa-
remos el código fuente y nos generará una aplicación preparada para la arquitectura ARM. El siguiente paso es pasar
esa aplicación a Ubuntu Touch y usarla.

1.1 Clickable

Hay muchas formas de crear un contenedor para hacer compilación cruzada (compilar en escritorio una aplicación de
otra arquitectura). Canonical lo tenía integrado en el SDK de Ubuntu Touch. Como ese SDK ya no tiene soporte, la
forma de trabajar ahora es usar Clickable. Si queréis programar una aplicación para Ubuntu Touch hay que usar esta
herramienta. Es la que tiene soporte oficial y recibe actualizaciones con correcciones de fallos y nuevas funcionalida-
des.

Pasaremos a continuación a ver como se crea una aplicación con Clickable así como a compilar el típico «Hola mun-
do». Inicialmente veremos los pasos en consola. Más adelante veremos la forma de integrar Clickable con el entorno
de programación (Qt). El único requisito es tener GNU/Linux en el ordenador. Se puede ejecutar en una máquina real
o en una máquina virtual. Tenéis todos los enlaces con la información del capítulo en el apartado Referencias.

Hay varias formas de instalar Clickable. Tomaré como base la forma recomendada.

1

Qt Programming Course Documentation, Versión 1.0

1.2 Dependencias

El contenedor que se usa con Clickable es docker. Como herramientas auxiliares tenemos Git y Python. Después de
instalar docker es recomendable reiniciar el ordenador.

$ sudo apt install docker.io adb git python3 python3-pip

Clickable
dependencies

PIP es una herramienta de Python que permite instalar módulos de Python de forma sencilla. Es importante usar el
comando con python3, si no usamos el mismo nombre podemos instalar la versión de Python por error.

$ pip3 install --user --upgrade clickable-ut

PIP
dependencies

2 Capítulo 1. Introducción a Clickable

Qt Programming Course Documentation, Versión 1.0

Por último actualizamos el path. Es necesario cerrar la consola y abrirla de nuevo para que se use el nuevo path.

$ echo PATH = $ PATH: ~ / .local / bin >> ~ / .bashrc

Updating
the path to use Clickable

Con estos pasos ya lo tenemos todo preparado para empezar a trabajar. Es posible usar versiones nightly (son compi-
laciones diarias) de Clickable. Aunque puede tener más funciones que la versión estable, también puede tener errores.
Para desarrollo os recomiendo usar siempre la versión estable. Ahorraréis mucho tiempo.

1.3 Creación de la primera aplicación

Antes de empezar os recomiendo crear una carpeta para la aplicación. Es importante que la ruta no tenga espacios. Por
ejemplo, si vais a programar aplicaciones una posible ruta sería ~/Documentos/Curso_Qt/Clickable. Creamos la ruta
y abrimos una consola. Hay que pasar a esa carpeta usando el comando cd.

Iniciamos el asistente con el comando: clickable create. Después podemos elegir la plantilla que queremos usar. Se-
leccionamos la primera opción. Las opciones son:

QML Only: QML + JavaScript

C ++

Python

HTML5

Go

Rust

1.3. Creación de la primera aplicación 3

Qt Programming Course Documentation, Versión 1.0

Clickable
templates

El siguiente paso es rellenar la información básica de la aplicación.

Application
data

Después elegimos la licencia. Por defecto se usa la licencia GPL 3. Dejamos el resto de preguntas con los valores por
defecto.

4 Capítulo 1. Introducción a Clickable

Qt Programming Course Documentation, Versión 1.0

Wizard
Summary

Si abrimos la carpeta del proyecto, veremos la estructura que ha creado el asistente.

Files
in the project folder

1.3. Creación de la primera aplicación 5

Qt Programming Course Documentation, Versión 1.0

1.4 Ejecutar la aplicación en el escritorio

Para ejecutar la aplicación en el escritorio entramos en la carpeta que se ha creado y ejecutamos el comando: clickable
desktop. La primera vez se inicializa el contenedor. Es normal que pide permisos de administrador. Si os sale el
mensaje, hay que ejecutar clickable update y después clickable desktop. Es posible que siga saliendo el mensaje. Si
eso ocurre, comprobad que el nombre no tiene espacios.

Container
error

Se descargarán todos los elementos necesarios para compilar la aplicación.

Starting
the desktop build

Después de una buena taza de café. . .

6 Capítulo 1. Introducción a Clickable

Qt Programming Course Documentation, Versión 1.0

Compilation
of the completed desktop application

La aplicación de ejemplo aparecerá cuando finalice el proceso.

1.4. Ejecutar la aplicación en el escritorio 7

Qt Programming Course Documentation, Versión 1.0

Hello world example

8 Capítulo 1. Introducción a Clickable

Qt Programming Course Documentation, Versión 1.0

1.5 Ejecutar la aplicación en la tableta

Los pasos son los mismos que antes, la diferencia es el comando que usamos. Para compilar para Ubuntu Touch sólo
hay que escribir clickable. El comando lanza la aplicación directamente en Ubuntu Touch. En este punto tenemos que
tener el dispositivo conectado al ordenador y habilitar las opciones de desarrollo.

Para una M10 FHD con Ubuntu Touch (OTA-12), los pasos serían:

Entramos en Acerca de. . .

About

Opciones de desarrollo.

1.5. Ejecutar la aplicación en la tableta 9

Qt Programming Course Documentation, Versión 1.0

Development
options

Activamos las opciones de desarrollo (tendremos que tener una contraseña para acceder a la tableta). Tiene que
salir un aviso de petición de conexión.

Connection
from PC

10 Capítulo 1. Introducción a Clickable

Qt Programming Course Documentation, Versión 1.0

Cuando todo esté configurado, lanzamos clickable y aparecerá la aplicación en el dispositivo.

Demo
on Ubuntu Touch

1.6 Conclusiones

En esta sección hemos visto los conceptos básicos para usar Clickable desde la consola. Un detalle importante es
que no dependemos del SDK de Ubuntu Touch. Por esta razón debería funcionar en las distribuciones de escritorio
actuales. Puede ser que algún paquete se llame diferente pero si instalamos Clickable usando PIP, debería funcionar
sin problemas. Quedan muchas cosas por ver en Clickable. Para hacerlo más amigable las iremos viendo poco a poco.

Se puede integrar Clickable con Qt Creator (la versión que hay en los repositorios de la distribución). En la siguiente
entrega veremos como hacerlo y sobre esa base se desarrollarán el resto de entregas del curso. Los capítulos revisados
no dependerán de la máquina virtual y serán más sencillos de seguir.

1.7 Referencias

Clickable

1.8 Créditos

Autor: Miguel Menéndez Carrión

Traductor al inglés: Milan Korecky

Traductor al inglés lionelb

1.6. Conclusiones 11

https://clickable-ut.dev/en/latest/

Qt Programming Course Documentation, Versión 1.0

12 Capítulo 1. Introducción a Clickable

CAPÍTULO 2

Introduction

This course is a new project to learn how to program applications that work on Ubuntu Touch. In the process I will ge-
nerate documentation with all the phases of development of an application: requirements acquisition, implementation
and distribution in the Ubuntu store. One of the problems found in Ubuntu Touch is the lack of applications, both, in
number and in functionality. I do not expect to change this situation in the short term, but one way to change it, is by
programming applications and helping other users do the same. Only in this way it will (it) be possible to change this
situation.

This course is not a master class in which I explain something and others repeat them automatically. The idea, is to
publish chapters and complete the course documentation with the feedback of the other users. If a particular block
gets more interest, it can be extend later. There is no problem in asking questions in the resources associated with the
course.

The documentation will be structured as a book. Its access is free and any user can read it in the browser or as PDF,
ePub or Mobi files. You can add comments to the book in the GitHub repository. The examples source code is hosted
in GitHub and uses Git as version control.

Finally I want to thank the users who have encouraged me to start this madness, among them are kain_X_X and
LarreaMikel. A course of this type can not be done by a single user. Evolving and achieving larger goals is only
possible when many people contribute to.

2.1 Previous Knowledge

Due to the subject of the course itself, some programming skills are requested. In this course we will mainly use QML
for the user interface and JavaScript or C/C++ for the logic. It helps to know either of the two languages, although it
will not be critical. Each chapter will explain the basic elements and a bibliography will be included for the user to
consult if in doubt.

The Ubuntu Touch Software Development Kit (SDK) is being released for the Ubuntu distribution. It will therefore be
necessary to use Ubuntu or any of the distributions that take it as a base. Not meeting this requirement is not a serious
problem either, because you can do the same in a virtual machine or using a Live USB.

To make it easier to follow the course, I will only put the most important parts of the source code. The rest of the files
will be in a source repository in Launchpad. It would be helpful knowing the basic commands of Bazaar.

13

https://github.com/mimecar/ubuntu-touch-programming-course-gitbook/issues

Qt Programming Course Documentation, Versión 1.0

2.2 Objectives of the Course

The main objective of the course is to learn how to program applications for Ubuntu Touch while having fun. Pro-
gramming is a time-consuming task and you have to like what you are doing. Applications can be simple or complex,
the important thing is that they solve a need that we have. For example, an application that has a list of plants in the
garden and let us know when we have to water them.

A good design in the logic of the application can greatly reduce development time. In the same way a bad design can
cause to end up throwing the code to the recycle bin and starting over, because it is easier to start with a different
approach.

2.3 Types of Applications

Ubuntu Touch has three types of applications. We can find Web Applications (WebApps), Scopes and Native Appli-
cations. A web application is basically a web browser tab that runs independently. It has its own icon in Unity (the
application launcher) and can contain remote information of any type. For security reasons a Web application does not
have access to the local content of the terminal.

WebApp
Example

The scope is the second type of application found in Ubuntu Touch. To some extent it behaves like a screen that shows
information to the user. The information can be external, for example the weather forecast, or internal in the form of
information aggregator. An example of this case would be the «Today» scope. This scope shows information from
different applications.

14 Capítulo 2. Introduction

Qt Programming Course Documentation, Versión 1.0

Scope
Example

Finally we have native applications. In this case the applications can access all the resources of the phone and are,
eventually, more complex than the Web applications and the scopes. Applications are confined in Ubuntu Touch and
can only access their own information. If we want to access information from other applications, we need to pass it
through the content-hub. As an example of native application we have the calendar.

2.3. Types of Applications 15

Qt Programming Course Documentation, Versión 1.0

Native
Application Example

2.4 Evolution of the Course

One detail that I want to point out (and that you will get tired of reading it throughout the course) is that this course
is not a master class. It is important that you participate with either questions, suggestions or errors. The order of the
chapters can vary and chapters that were already closed can be opened to add new content. This course is alive and can
only be improved if we all get involved. It doesn’t matter if questions are very basic or what the other users would say.
The main reason of following this course is learning. Remember: The only stupid questions is the one that you don’t
ask.

Access to the mailing list is open and only a Launchpad account is needed. There is no censorship except several cases
of common sense:

The questions must be related to the course.

Spam of any kind is not allowed.

Attacking other users is not allowed.

If any of these rules is broken, I will warn the person first. If the user continues with its attitude, will be asked to leave
the mailing list. I hope I never have to get to that end.

This course is not set as a whole and therefore I will write it week after week. For this reason, it is possible that some
error appears. If this is the case, do not hesitate to warn me in order to correct it. This course is an opportunity to create
content and give a boost to Ubuntu Touch.

16 Capítulo 2. Introduction

Qt Programming Course Documentation, Versión 1.0

2.5 Resources

Mailing List: https://launchpad.net/~ubuntu-touch-programming-course

Trello Board: https://trello.com/b/gQEXHP3v/ubuntu-touch-programming-course

2.6 People who have collaborated

Larrea Mikel: revision of the chapter in Spanish.

Cesar Herrera: revision of the English translation.

Joan CiberSheep: revision of the English translation.

2.5. Resources 17

Qt Programming Course Documentation, Versión 1.0

18 Capítulo 2. Introduction

CAPÍTULO 3

Web App - Basic

In this chapter we’ll study the creation of a Web App and will go through all phases of the process, ending with the
creation of a click package for Ubuntu Touch. To complete this chapter it will be required to have the Ubuntu SDK
installed. It is also advisable to have completed the sample applications from the previous chapter.

3.1 What is a Web App?

A Web App is a type of Ubuntu Touch application. It works by displaying a web page as if it were a standalone
application. Like any other application, it will appear in the scope of applications and can be managed from the
Ubuntu Store. You may wonder why display a web page as an app if the browser already does that natively.

Internally, the browser and a Web App share the same code base. The difference is that the Web App is isolated, so it
does not share information with the browser. Also the user can only open URLs that match a filter that is previously
defined. However, this type of applications has a limited access to device resources. If you need to access these
resources you must write a native application.

From the programming point of view, a Web App is the easiest type of application that can be found: just define the
URLs that you are interested in. It’s really simple to make and the SDK does all the work for you. To distribute a Web
App it is necessary to package it as a click package that can be uploaded to the Ubuntu Store. Once uploaded to the
Ubuntu Store, a Web App is automatically added to uApp Explorer.

3.2 Creation of the project

To create a new project click on the button New Project. Another way to do this is from the File menu, New File or
Project.

19

https://uappexplorer.com/apps?type=webapp

Qt Programming Course Documentation, Versión 1.0

New
Project

A window will appear with the project types that can be created. You have to select Web App. As shown in the
description, it is a project independent of the platform and with limitations in the access to the resources.

20 Capítulo 3. Web App - Basic

Qt Programming Course Documentation, Versión 1.0

Project
Web App

You must select the path in which the project will be saved. Remember that you can not use spaces or characters with
accents.

Project
Folder

Fill in the application information.

3.2. Creation of the project 21

Qt Programming Course Documentation, Versión 1.0

Click
Info

You have to select the Kits that will be used. As it is interesting to generate a computer executable (Desktop) and for
the device (Ubuntu), you have to leave both ticked. The Desktop Kit always has to be selected by default otherwise,
you will need to restart the ubuntu-sdk-ide configuration.

Project
Kits

The last step shows a summary. I recommend using version control for the applications you write. It allows you to
quickly return to specific points of development easily. This also controls changes between different versions of the
code making it easier to fix bugs.

22 Capítulo 3. Web App - Basic

Qt Programming Course Documentation, Versión 1.0

Project
Brief

The wizard is now complete. The project opens automatically.

Project
Open

3.2. Creation of the project 23

Qt Programming Course Documentation, Versión 1.0

3.3 Structure of the project

The project of a Web App is very simple and consists of several files.

.excludes: extensions and folders that are out of IDE parse.

File
.excludes

manifest.json: contains the application information that will be displayed to the user. This file is processed
automatically when you upload the application to the Ubuntu Store. All applications have an associated name
that is added to all packages. In the example is the text «.mimecar».

24 Capítulo 3. Web App - Basic

Qt Programming Course Documentation, Versión 1.0

File
manifest.json

WebApp.apparmor: application permissions.

3.3. Structure of the project 25

Qt Programming Course Documentation, Versión 1.0

File
WebApp.apparmor

WebApp.desktop: information for the App Scope to launch the Web App.

26 Capítulo 3. Web App - Basic

Qt Programming Course Documentation, Versión 1.0

File
WebApp.desktop

WebApp.png: application icon.

3.3. Structure of the project 27

Qt Programming Course Documentation, Versión 1.0

File
WebApp.png

3.4 Modifications

There are three modifications to the template provided by the Ubuntu Touch SDK. The first one is to change the URL
that is opened by the WebApp.desktop file. You have to change the URL that is displayed in the Exec line. URLs that
are within the same domain will appear in the Web App. If you click on a link that goes to another domain, it will be
opened in the web browser.

Exec=webapp-container --enable-back-forward --store-session-cookies
--webappUrlPatterns=https?://m.WebApp.com/* http://m.WebApp.com%u

Must be replaced by:

Exec=webapp-container --enable-back-forward --store-session-cookies
--webappUrlPatterns=https?://mimecar.gitbooks.io/ubuntu-touch-programming-course/
content/* https://mimecar.gitbooks.io/ubuntu-touch-programming-course/content/
%u

The next step is to replace the icon file (WebApp.png) with a PNG image. This image will be the app icon displayed
in the scope. The resolution must be 256x256 or higher.

Finally, open the manifest.json file and complete the application information.

28 Capítulo 3. Web App - Basic

Qt Programming Course Documentation, Versión 1.0

3.5 Web App Testing

Press the Play button to launch the application on the desktop. The Desktop kit is selected by default. Note that the
SDK template has a bug that does not allow launching the application.

To solve this follow this steps:

Project button (left sidebar).

Under Kit, select “Run”.

Click on the combo that appears next to “Run Environment”.

Click on the Add button and put the data shown in the screen capture.

Web
App - Desktop

The value of APP_ID must match the “name” field in the file “manifest.json”

3.5. Web App Testing 29

Qt Programming Course Documentation, Versión 1.0

Web
App - Desktop

If you select Ubuntu Target Kit, you can see the result on the device. It is important that the circle next to the Ubuntu
Kit is green. Otherwise there will be no connection to the device.

30 Capítulo 3. Web App - Basic

Qt Programming Course Documentation, Versión 1.0

Web
App - Device

3.6 Creating the click package

The Web App works on the device but only while it is connected to the computer. To remain permanently on the
device, it is necessary to install it on the system using a click package. Click on the Build and validate click package
button.

3.6. Creating the click package 31

Qt Programming Course Documentation, Versión 1.0

Click
Build

If there is no problems, click the Install on device button. It is possible that it gives a connection problem. If so, go to
Devices, select the device and in the section Control click on the button Open SSH connection to the device.

32 Capítulo 3. Web App - Basic

Qt Programming Course Documentation, Versión 1.0

Click
Install

The result is the application installed on the device.

3.6. Creating the click package 33

Qt Programming Course Documentation, Versión 1.0

App
Scope

3.7 Conclusions

A Web App is very simple to program. The Ubuntu Touch SDK does most of the work. The Web App disappears when
the device is disconnected. To install it, you must create a Click package. If you want to share the application with
other users, you have to publish the Click package in the Ubuntu store.

3.8 References

Web App tutorial

3.9 Source Code

Source code on GitHub.

3.10 People who have collaborated

Larrea Mikel: revision of the chapter in Spanish.

Cesar Herrera: revision of the English translation.

Joan CiberSheep: revision of the English translation.

34 Capítulo 3. Web App - Basic

https://developer.ubuntu.com/en/phone/web/tutorials/web-app-tutorial/
https://github.com/mimecar/ubuntu-touch-programming-course

CAPÍTULO 4

QML App - Basic

4.1 QML language

QML is a language that is based on JavaScript and is used to create the user interface of an application. It allows you
to use both traditional components (buttons, lists, etc.) and graphic elements to which logic is added. An example of
the first case is the Ubuntu Touch user interface. For the second case there are several examples on the QT Web. QML
handles the visualization but not the logic that implements the application.

This logic can be written in several languages, depending on the needs we have. If the application is a game and
needs computing power, the language chosen would be C/C++. On the other hand, if the performance of the app is
not critical, you can use JavaScript. At the moment the applications of the course will use JavaScript and later will be
written in C/C++.

The configuration of the project must be the following:

Project type: QML App with Simple UI (qmake).

Kits: select all installed kits.

4.2 Project structure

The project will be created with the chosen template and will open by default, the user interface (QML) file.

35

https://www.qt.io/ui/

Qt Programming Course Documentation, Versión 1.0

Project
Window

The structure of the project varies slightly comparing it to the one that had the Web App.

Project Structure

Files that can be modified are displayed in bold type. The remaining files are for internal use of the IDE and should
not be modified.

Calculator.pro: main project file.

Calculator

36 Capítulo 4. QML App - Basic

Qt Programming Course Documentation, Versión 1.0

• Calculator.pro: information for the compiler.

• QML

∘ Tests / unit: The files in this folder are used to make validations of the application.

∘ Main.qml: file containing the user interface of a screen.

• Other files

∘ Tests / autopilot: The files in this folder are used to run the application.

∘ Calculator.apparmor: application permissions

∘ Calculator.desktop: application information for the application launcher.

∘ Calculator.png: application icon.

• Other files

∘ Manifest.json.in: information for the Ubuntu store with application data.

The IDE has a tab that with the text “Design”. This tab analyzes the generated QML code and converts it into the user
interface. The tool does not work well and gives errors even if the QML code is valid.

You can see this on the project screenshot on the words that are marked in red on lines 23, 24 and 25. For this reason,
user interface tests will be performed by running the application on the computer.

4.3 File structure

All QML files have a common structure that you will see below. QML allows you to use a number of components that
are already defined. This information is passed to the project with the import statement. It is possible to use different
versions of the components although it would be normal to choose the latest available version.

import QtQuick 2.4
import Ubuntu.Components 1.3

4.4 Comments

Comments are guides that the programmer writes about specific parts of the code. I recommend writing comments
on code parts that are complex. It is best to write them when the code is still fresh. If you wait a while you may not
remember all the details.

Comments can be write in two ways:

If the comment has several lines you can use

/*
* Description

*/

Whereas if you have only one line

// Description

In the sample code it looks like this:

4.3. File structure 37

Qt Programming Course Documentation, Versión 1.0

/*!
\brief MainView with a Label and Button elements.

*/

4.5 MainView

MainView is the root element of the user interface. It automatically adapts to the rotation of the device.

MainView {

This block of code doesn’t need to be modified. It is used internally.

// objectName for functional testing purposes (autopilot-qt5)
objectName: "mainView"

// Note! applicationName needs to match the "name" field of the click manifest
applicationName: "calculadora.innerzaurus"

4.6 Grid Unit

The next two statements are responsible for defining the initial size of the screen. An important detail is that the
dimensions are not defined in pixels but in some units called gridUnits (gu). The reason to invent new units and not
using pixels that already exists is that gridUnits is universal to the different screen sizes and translates. An example
will make this clear.

Suppose that we have a device with a resolution of 600 x 800 pixels. If a rectangle is defined with the dimensions
300x800 pixels, will occupy the middle of the screen. Now if you use a device that has a screen resolution of 1080x1920
pixels, the rectangle will not reach the middle of the screen. To avoid this problem, define the dimensions in gu (gridU-
nit). If the dimensions are defined in gu, internally, the system will calculate those dimensions with the characteristics
of the screen. The final result will be that the rectangle always has the same size regardless of the screen resolution.

width: units.gu(100)
height: units.gu(75)

4.7 Page Element

The Page element defines a view. It is recommended that it be included within a MainView element (our specific case)
or an AdaptivePageLayout element. It contains a header with an identifier, title and style that applies to the elements
of the header. The style is defined within the StyleHints element.

Page {
header: PageHeader {
id: pageHeader

title: i18n.tr("Calculator")

StyleHints {
foregroundColor: UbuntuColors.orange
backgroundColor: UbuntuColors.porcelain

(continué en la próxima página)

38 Capítulo 4. QML App - Basic

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

dividerColor: UbuntuColors.slate
}

}

To see the user interface that is created it is necessary to click on the Play button. Although you can also try on a
physical device I recommend that you work with the desktop. The test process is faster and at first you will use it a lot.

Template

In the default QML file there are several components. To make it easier to learn it will be created from scratch with a
more detailed explanation. You have to delete the lines from 28 to 53.

Below you will see an initial design of the calculator with labels. It will help to introduce the way components works
and will get a minimum base to continue with QML.

4.8 Label

A label is a component that displays text. Its minimum structure is:

Label {
text: "Hello World"

}

4.8. Label 39

Qt Programming Course Documentation, Versión 1.0

Add the following code from line 28. Then run the application on the desktop.

Label {
text: "Hello World. Look at me, I'm programming in QML"

}

Label {
text: "I am another label"

}

Now comment the lines in the header and run the application.

Label
Overlay

The labels are shown, but the two are overlayed. In one hand there is the definition of the component and on the other
hand, its organization. If the header is displayed, the tags do not show and if the header is removed the tags overlap.

4.9 Component Organization

Components can be organized in rows, in columns or in a grid —that combines rows and columns. To distribute labels
in a column they have to be inside a Column element.

40 Capítulo 4. QML App - Basic

Qt Programming Course Documentation, Versión 1.0

Column {

Label {
text: "Hello World. Look at me, I'm programming in QML"

}

Label {
text: "I am another label"

}

}

With this modifications we can see the improvement.

Column
of Labels

When you restore the header code, the labels disappear again. It”s not that qml doesn’t like us. The labels are actually
hidden by the header, so it is necessary to define a relation between the header and the column

Column {
anchors.top: pageHeader.bottom

Label {
text: "Hello World. Look at me, I'm programming in QML"

(continué en la próxima página)

4.9. Component Organization 41

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

}

Label {
text: "I am another label"

}

}

The result is the expected now.

Chapter
End

4.10 Exercises

In the previous chapters you finished the exercises too quickly. In this chapter this will not be the case. The exercises
are:

Exercise 01. Create three columns one after the other and show the numeric keypad numbers (1, 4, 7, 2, 5, 8, 3,
6, 9; 0).

Exercise 02. Distribute keypad numbers as a table by combining columns and rows. The element to create the
rows is Row and is used similarly to the element Column. You may use the documentation included in the SDK

42 Capítulo 4. QML App - Basic

Qt Programming Course Documentation, Versión 1.0

but you may not search the solution on the Internet. To view the SDK documentation, press the F1 key with a
QML component selected.

4.11 Source Code

Source code on GitHub.

4.12 People who have collaborated

Larrea Mikel: revision of the chapter in Spanish.

Cesar Herrera: revision of the English translation.

Joan CiberSheep: revision of the English translation.

4.11. Source Code 43

https://github.com/mimecar/ubuntu-touch-programming-course

Qt Programming Course Documentation, Versión 1.0

44 Capítulo 4. QML App - Basic

CAPÍTULO 5

QML App - Format

5.1 Organizing components

In exercise 1 you had to distribute the calculator numbers in columns. To make the design of the calculator clearer, let’s
add the distribution of the numbers in a table. I have added a couple of new texts to simplify the later development.

| Column 1 | Column 2 | Column 3 | | — | — | — | | 7 | 8 | 9 | | 4 | 5 | 6 | | 1 | 2 | 3 | | 0 | . | EXP |

This table has three columns. If the numbers are grouped into columns (as requested in the exercise) the result would
be the one shown in the next image.

45

Qt Programming Course Documentation, Versión 1.0

Exercise
1

Source code:

// First column
Column {

anchors.top: pageHeader.bottom
id: column1

Label {
text: "7"

}

Label {
text: "4"

}

Label {
text: "1"

}

Label {
text: "0"

}

(continué en la próxima página)

46 Capítulo 5. QML App - Format

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

}

// Second column
Column {

anchors.top: column1.bottom

id: column2

Label {
text: "8"

}

Label {
text: "5"

}

Label {
text: "2"

}

Label {
text: "."

}
}

// Third column
Column {

anchors.top: column2.bottom
id: column3

Label {
text: "9"

}

Label {
text: "6"

}

Label {
text: "3"

}

Label {
text: "EXP"

}

}

Unless you are programming a design calculator, the screen capture is different from the initial table. The columns are
correct but they are distributed one underneath the other, not in parallel as they should. To distribute the numbers in a
row you have to use the Row layout.

5.1. Organizing components 47

Qt Programming Course Documentation, Versión 1.0

5.2 The Row Layout

The Row layout works just like a Column element with a difference: the components are distributed in a row. The
structure for this layout is as follows:

Row {
// Component

}

If the table is defined using only rows, all numbers would be distributed in a single row. To solve this problem we need
to separate the table into rows and columns. The rows will contain the numbers horizontally, in four rows in total. The
next step is to distribute the four rows in a column.

Exercise
2

The source code is similar to the previous case. You just have to change the way in which the components are organized.

// First column
Column {

anchors.top: pageHeader.bottom
id: column1

(continué en la próxima página)

48 Capítulo 5. QML App - Format

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

// First row
Row {

Label {
text: "7"

}

Label {
text: "8"

}

Label {
text: "9"

}
}

// Second row
Row {

Label {
text: "4"

}

Label {
text: "5"

}

Label {
text: "6"

}
}

// Third row
Row {

Label {
text: "1"

}

Label {
text: "2"

}

Label {
text: "3"

}
}

// Fourth row
Row {

Label {
text: "0"

}

Label {
text: "."

(continué en la próxima página)

5.2. The Row Layout 49

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

}

Label {
text: "EXP"

}
}

}

In this way the components are distributed as wanted. By separating the definition of rows and columns it is possible to
have in one row 3 components and in another row, only one. If all rows in the table have the same number of elements
you can use the Grid layout, which simplifies the QML code and gives us more flexibility.

5.3 Grid Layout

This layout can be used if all rows and columns have the same number of components. The structure that follows is as
shown:

Grid {
columns: 3

// Components
}

The most important parameter is the number of columns. The layout distributes the components automatically using
the number of columns as a limit. If you enter an extra component, it automatically adds a row and adds that component
in the first column.

50 Capítulo 5. QML App - Format

Qt Programming Course Documentation, Versión 1.0

Exercise
3

When defining a layout you can add a series of parameters that modify its behavior. In this case, only the number of
columns is defined. As you can see in the code, it’s not defined how the components are distributed.

Grid {

anchors.top: pageHeader.bottom
spacing: 10
columns: 3

// Row 1
Label {
text: "7"

}

Label {
text: "8"

}

Label {
text: "9"

}

// Row 2

(continué en la próxima página)

5.3. Grid Layout 51

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

Label {
text: "4"

}

Label {
text: "5"

}

Label {
text: "6"

}

// Row 3
Label {
text: "1"

}

Label {
text: "2"

}

Label {
text: "3"

}

// Row 4
Label {
text: "0"

}

Label {
text: "."

}

Label {
text: "EXP"

}

}

5.4 The Button

The label is a component that allows to display information to the user. The calculator that is being developed must
allow the user to enter numbers and the operations to be performed with. To do this you have to use another component:
the button.

A button has an associated text that tells the user the function it performs. When the user clicks or taps it, an action is
generated that allows to execute an associated code. The button structure is a bit more complex than the label structure.
We will learn it gradually.

Button {
text: "Text"

}

Based on the code that shows the labels in a grid, we need to make several changes:

52 Capítulo 5. QML App - Format

Qt Programming Course Documentation, Versión 1.0

Replace the labels with buttons. To do this, it is enough to change the Label text by the object Button.

Modify the anchor of the grid so that it is aligned at the bottom of the screen.

Add two new columns to the table with the buttons shown in the image.

Exercise
4

Source code:

Grid {

anchors.bottom: parent.bottom
spacing: 10
columns: 5

// First row
Button {

text: "7"
}

Button {
text: "8"

}

Button {

(continué en la próxima página)

5.4. The Button 53

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

text: "9"
}

Button {
text: "DEL"

}

Button {
text: "AC"

}

// Second row
Button {

text: "4"
}

Button {
text: "5"

}

Button {
text: "6"

}

Button {
text: "*"

}

Button {
text: "/"

}

// Third row
Button {

text: "1"
}

Button {
text: "2"

}

Button {
text: "3"

}

Button {
text: "+"

}

Button {
text: "-"

}

// Fourth row
Button {

text: "0"
}

(continué en la próxima página)

54 Capítulo 5. QML App - Format

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

Button {
text: "."

}

Button {
text: "EXP"

}

Button {
text: "ANS"

}

Button {
text: "="

}
}

At this point, the application is starting to look like a calculator. There are two changes that would greatly improve
its appearance though. The first is the colour of the buttons. The calculators have dark buttons and depending on the
function, that colour varies. The second change is the size of the buttons. Do not forget that the calculator must work
on a real device and normally the user fingers take up more space than the mouse pointer.

5.5 Colour Settings

Ubuntu Touch has a series of colours defined in its palette. If they are used in the design of the user interface, the
application will look integrated into the system. To define the background colour of a button, the colour property is
used.

Button {
text: "8"
color: UbuntuColors.graphite

}

You have to change the background colour of all buttons. The numbers should be dark gray. The operations a light
gray and the buttons DEL and AC, reddish color. To complete the exercise you have to change the background color.
It doesn’t matter if it doesn’t match the one on the screenshot.

5.5. Colour Settings 55

Qt Programming Course Documentation, Versión 1.0

Exercise
5

Source code:

Grid {

anchors.bottom: parent.bottom
spacing: 10
columns: 5

// First row
Button {

text: "7"
color: UbuntuColors.graphite

}

Button {
text: "8"
color: UbuntuColors.graphite

}

Button {
text: "9"
color: UbuntuColors.graphite

}

(continué en la próxima página)

56 Capítulo 5. QML App - Format

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

Button {
text: "DEL"
color: UbuntuColors.red

}

Button {
text: "AC"
color: UbuntuColors.red

}

// Second row
Button {

text: "4"
color: UbuntuColors.graphite

}

Button {
text: "5"
color: UbuntuColors.graphite

}

Button {
text: "6"
color: UbuntuColors.graphite

}

Button {
text: "*"
color: UbuntuColors.warmGrey

}

Button {
text: "/"
color: UbuntuColors.warmGrey

}

// Third row
Button {

text: "1"
color: UbuntuColors.graphite

}

Button {
text: "2"
color: UbuntuColors.graphite

}

Button {
text: "3"
color: UbuntuColors.graphite

}

Button {
text: "+"
color: UbuntuColors.warmGrey

}
(continué en la próxima página)

5.5. Colour Settings 57

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

Button {
text: "-"
color: UbuntuColors.warmGrey

}

// Fourth row
Button {

text: "0"
color: UbuntuColors.graphite

}

Button {
text: "."
color: UbuntuColors.graphite

}

Button {
text: "EXP"
color: UbuntuColors.graphite

}

Button {
text: "ANS"
color: UbuntuColors.graphite

}

Button {
text: "="
color: UbuntuColors.graphite

}
}

5.6 Changing the Button Size

The user interface of the calculator can be used on a computer. In a real device the buttons are too small. An important
detail is that the interface has to adapt to the characteristics of each device. It is not the same to have a vertical mobile
screen than having it horizontal.

For now, we will use a vertical screen in mind to design the app. The buttons have two properties that allow you to
define their vertical and horizontal sizes. The text of the button doesn’t automatically adapt to the size of the button so
it will have to be adapted too. The button would have the following structure:

Button {

// Font size
text: "7"
font.pointSize: 17

// Background color
color: UbuntuColors.graphite

// Button dimmensions
width: buttonWidth

(continué en la próxima página)

58 Capítulo 5. QML App - Format

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

height: buttonHeight

}

Repeat the same structure on all buttons. To make it easier to adjust the size of the buttons, we will define two variables.
The variables are defined before the view (Page) and have the following structure:

property real buttonWidth: units.gu(13)
property real buttonHeight: units.gu(7)

They are defined with the word “property” to indicate that are a variable. “Real” defines a number with decimals.
Remember that the dimensions must be expressed in the form of GridUnits.

You need to adjust the size of the text and the dimensions of all buttons on the calculator. The result must be similar to
the following:

Exercise
6

Source code:

Grid {

anchors.bottom: parent.bottom
anchors.left: parent.left

(continué en la próxima página)

5.6. Changing the Button Size 59

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

anchors.right: parent.right

spacing: 15
columns: 5

// First row
Button {

text: "7"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "8"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "9"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "DEL"

font.pointSize: 17
color: UbuntuColors.red

width: buttonWidth
height: buttonHeight

}

Button {
text: "AC"

font.pointSize: 17
color: UbuntuColors.red

width: buttonWidth
height: buttonHeight

}

// Second row
(continué en la próxima página)

60 Capítulo 5. QML App - Format

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

Button {
text: "4"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "5"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "6"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "*"

font.pointSize: 17
color: UbuntuColors.warmGrey

width: buttonWidth
height: buttonHeight

}

Button {
text: "/"

font.pointSize: 17
color: UbuntuColors.warmGrey

width: buttonWidth
height: buttonHeight

}

// Third row
Button {

text: "1"

font.pointSize: 17
color: UbuntuColors.graphite

(continué en la próxima página)

5.6. Changing the Button Size 61

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

width: buttonWidth
height: buttonHeight

}

Button {
text: "2"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "3"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "+"

font.pointSize: 17
color: UbuntuColors.warmGrey

width: buttonWidth
height: buttonHeight

}

Button {
text: "-"

font.pointSize: 17
color: UbuntuColors.warmGrey

width: buttonWidth
height: buttonHeight

}

// Fourth row
Button {

text: "0"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "."

(continué en la próxima página)

62 Capítulo 5. QML App - Format

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "EXP"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "ANS"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}

Button {
text: "="

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

}
}

This chapter ends with this example. The next step is to add a label at the top of the screen to show the operations and
their result.

5.7 People who have collaborated

Larrea Mikel: revision of the chapter in Spanish.

Cesar Herrera: revision of the English translation.

Joan CiberSheep: revision of the English translation.

5.7. People who have collaborated 63

Qt Programming Course Documentation, Versión 1.0

64 Capítulo 5. QML App - Format

CAPÍTULO 6

QML App - Events

6.1 Formatting labels and Events

Starting with the previous code, the calculator with buttons, we will add in this chapter more information regarding
labels. A label is a component which shows information to the user. It can be used both for showing fixed and informa-
tion that can change. The first case, fixed information, was already presented at the beginning of this course, now we
are going to focus on the second one. When the user pushes the buttons of the calculator it has to get feedback about
what has been done. The buttons change aspect in an automatic way but they have no information about the operations
performed. This problem will be fixed using a label which shows the values of the operation.

Besides showing the text in the label, it is necessary to save the numbers and the operation somewhere. A couple of
auxiliary variables will be used for that purpose. The flow of the app would be:

User introduces the first number

Mathematical operation is selected

User introduces the second number

The ANS button is pushed.

The easiest way would be concatenating text on the button and the label to show the operation to the user. The problem
with this approach is it would make necessary to extract that information of the label later to do the operations by
code. Unfortunately, this solution has more cons than pros. A different approach comes following the opposite way:
the buttons update some variables and, then, update the labels. In this way, the label would show only the internal
status (model) and it would be easier to handle. The use of methods (functions) will be also introduced to implement
this feature.

Let’s start taking as initial point the calculator app from previous chapter as shown in the next figure.

65

Qt Programming Course Documentation, Versión 1.0

Code

66 Capítulo 6. QML App - Events

Qt Programming Course Documentation, Versión 1.0

of the calculator used as starting point

6.2 Label to show operations

In a first iteration the label will be fixed in the upper part of the grid of buttons. The gap at the top will be used later
to show a history of the operations with another component to work with text. The first step will be, therefore, to
create the component with a text field by default. The point is, how do we start? Based on the comments related to
the previous exercise of the grid done by the participants, there are still some doubts about how the anchor works.
From this moment, anchors will be used quite frequently, so it is important to remember its functioning to continue
this chapter.

The components in QML need to be seen as boxes. Each box has four anchors in the up, down, left, right positions.
Playing with those anchors is possible to distribute the components on the screen in an arbitrary way. There are two
ways for the distribution of the components:

By defining relationships between them using anchors.

By using a layout.

In the calculator the two previous ways have been already applied during this course. The buttons are distributed using
a layout grid. The grid has the same behaviour than a component in QML, which makes it, in terms of design, a box
with four anchors. The components are placed inside a Page which is at the same time, a box with anchors.

To move the grid of buttons, the anchors of the page and the anchors of the grid need to be related. Depending on this
relationship, the organization will change in the screen. The easiest way is to link the position of the grid bottom to
the same position in the page:

anchors.bottom: page.bottom

One of the common doubts arriving at this point of the course is: where is «page» defined? The component in the
code is Page and QML is case sensitive. When a component is created, several attributes must be defined. Among
those attributes, there is an identifier which allows to access the component from other parts of the code. This id is not
mandatory to show the component, but it is mandatory when you want to use the component later. The Page definition
would be:

Page {
id:page
...

}

Now, any component could access the information in Page. The identifier (»id») can be both used in the components
and in the layouts. If an id is added to the grid, it will be possible to anchor the label to the component. In this new way,
if the grid grows when adding new components, the label will adapt to the new position without additional changes.

Let’s create the label and assign an ID:

Label {
anchors.bottom: grid.top
text: "Operation and result"

}

Grid {
id: grid
...

}

6.2. Label to show operations 67

Qt Programming Course Documentation, Versión 1.0

Label

68 Capítulo 6. QML App - Events

Qt Programming Course Documentation, Versión 1.0

anchored to the grid

The label is placed in the upper part of the grid but the text remains a little bit weird in the left part of the screen.
Following the comparison with the box, the label is a box which starts in the first «O» and it ends in the last «o». To
align it to the right, it is necessary to add a new anchor, which must be the same for label and grid

anchors.right: grid.right

6.2. Label to show operations 69

Qt Programming Course Documentation, Versión 1.0

Label

70 Capítulo 6. QML App - Events

Qt Programming Course Documentation, Versión 1.0

placed

An important detail, which cannot be appreciated in the figure due to the background, is that neither grid nor label are
aligned with the right part of the screen. There is still an empty part with no use. It is possible to assign the label to
the anchor of the page instead of using the corresponding one of the grid, but in that case buttons and labels would be
misplaced. A solution to this problem will be shown later in this course.

Before continuing with the app it is necessary to fix a little bit the appearance of the label. The text must be bigger
and the font will be changed for a smaller monospace type of font, that means, all characters equally spaced. Both
modifications will be applied to the Label, which has been created previously.

The same logic applied in the buttons, using the attribute font.pointsize, will be follow to change of the fontsize. The
final result should be close to:

6.2. Label to show operations 71

Qt Programming Course Documentation, Versión 1.0

Label

72 Capítulo 6. QML App - Events

Qt Programming Course Documentation, Versión 1.0

with size modified

In this example the fontsize is 25 px. You can find an example of a similar code in the buttons and it will be great
for you to struggle a little bit with this part of the app. The doubts of the previous part appeared just in the parts of
the code which were not specifically in the explanation. It would be very easy for me to solve your doubts, but it is
important for you to look for your own solution when facing problems.

The attribute font.family can be used to change font family. The following code has to be added inside of the label:

font.family:"UbuntuMono"

Just with text characters is more complicated to distinguish the effect of the monospace font. That is the reason why I
have replaced the initial text by numbers and operators.

6.2. Label to show operations 73

Qt Programming Course Documentation, Versión 1.0

Monospace

74 Capítulo 6. QML App - Events

Qt Programming Course Documentation, Versión 1.0

font

The same code but with the font by default. There is no difference in the numbers when changing font type but you
can see some major changes in the operator symbols. Notice specially the change in position in the zero respect the
«AC» button in both figures.

6.2. Label to show operations 75

Qt Programming Course Documentation, Versión 1.0

Normal

76 Capítulo 6. QML App - Events

Qt Programming Course Documentation, Versión 1.0

font

6.3 Adding logic to the buttons

The objective is making the buttons pressed by the user appear as text of the label. If the user presses number 7, the
number 7 will appear as text. When the user presses another button, the text present in the label will be concatenated
with the text of the new button.

When components are used in QML, several signals are generated automatically. For example, button pressed or
button released. Those events can be processed in the code and do other actions when detected. As an example of this
behaviour, the signal onClicked will be processed. The code of button «7» will be set as follows:

Button {
text: "7"

font.pointSize: 17
color: UbuntuColors.graphite

width: buttonWidth
height: buttonHeight

onClicked: {
result.text = result.text + "7"

}

}

To access the label, it is necessary to create first an identifier (id) with the name «result». When pressing the button,
an onClick signal is generated. As that signal is the one being captured, the code in curly brackets is being executed.
Basically, it makes the attribute text to concatenate the value it had with the new value of the number.

As the final exercise of this chapter, I will ask you to add the logic to all the buttons of the calculator in the same way.
The buttons of the operations can show in the label the same text as the one on the button. At the end, the app needs to
show in the label the buttons pressed.

This part is a little bit shorter than the previous ones. Besides learning how the QML components work, I am intro-
ducing logic to the app. This logic allows the app to perform certain actions when users work with it. In the course, I
start from scratch considering the knowledge of the user in programming QML and general programming. That is the
reason why I am introducing concepts step by step to make it easy to follow.

If you have any question, please contact me using the contact details associated with the course and I will be pleased
to answer all your questions.

6.4 People who have collaborated

Santiago Mohr: English translation.

6.3. Adding logic to the buttons 77

Qt Programming Course Documentation, Versión 1.0

78 Capítulo 6. QML App - Events

CAPÍTULO 7

QML App - Database access

This chapter will show how to access to a SQLite database from a QML + JavaScript application. SQLite is the database
used by Ubuntu Touch (UBports) (and other mobile devices). For more informations about SQLite see its website and
the links proposed at the end of the chapter.

The prerequisites necessary to understand this tutorial are a knowledge of QML, JavaScript, Ubuntu Touch SDK with
his IDE and a base SQL language knowledge. If you don’t have that prerequisites you are invited to read the dedicated
sections of the QML course and the suggested tutorial at the end of the chapter.

Premise: for the database access will be used QtQuick.LocalStorage object (provided by QT library), and not U1Db-
QT (the QML module created by Canonical). This choice is due to the fact that U1Db-QT currently seems incomplete
and not flexible like the JavaScript solution.

7.1 Introduction

In this chapter we’ll be showed a custom QML application to provide examples of the common operations performed
on a database: Create, Research, Update, Delete (ie: a C.R.U.D. application). That sample application will have a basic
user interface (our focus is on the database access part) and don’t have an important real use; was chosen and created
only for his didactic relevancy.

Note: This chapter don’t cover the steps necessary to package, test and deploy the application (will be the focus of
next chapters).

7.2 The sample application: functional presentation

The application that we are going to describe is a «weather temperature recorder». Using it, the user can insert the
daily temperature value of his favourite city and manage the saved ones: update, delete or search them. At first start-up,
the application must provide default configuration values for the target city and the temperature unit (ie: Celsius or
Fahrenheit degree). The user can accept the proposed values or insert custom ones (the saved configuration can be
updated later if the user want do it).

79

https://www.sqlite.org/
https://docs.ubuntu.com/phone/en/apps/api-qml-development/U1db.tutorial

Qt Programming Course Documentation, Versión 1.0

Each day the user can insert only one temperature value. Saved values can be searched by date. If a value is found,
is possible modify or delete it. Is also possible execute a batch deletion of all the saved temperature values. The
application must provide a validation system to prevent invalid insert, like empty or not numeric values.

Let’s start:

1. Set-up the Ubuntu IDE and SDK as described at the beginning of this course creating at least a «Desktop» kit.

2. Download and import our sample project (named “WeatherRecorder”) in the Ubuntu IDE (File → Open File or
Project. . . → choose the folder containing the file ‘WeatherRecorder.pro’)

During the import, Ubuntu SDK ask to choose the «Target kits» for the project (ie: the platform where the application
will be executed). We want run our project form the IDE, so that is necessary flag an existing «Desktop Kit» or create
a new one. You can find more details about «Kit» at the beginning of this course.

At the end of import process, expand the nodes in «Projects» view. The structure must be like the following one:

80 Capítulo 7. QML App - Database access

Qt Programming Course Documentation, Versión 1.0

Application
source tree

Feel free to open and explore any files and study the project structure before continue. Before concentrate our attention
on the database access, we want provide some background informations that could be useful for the future.

The entry point of a QML application is the Main.qml file, it contains the code that create and start the full application.
Running for the first time our application (press the green «Play» icon of Ubuntu SDK) is shown a configuration
dialogue filled with default values. If you like them, press «Save» button, otherwise modify them before save.

The following image display the configuration page shown at first start-up:

7.2. The sample application: functional presentation 81

Qt Programming Course Documentation, Versión 1.0

Application
configuration wizard

Let’s see more details about what happen when the application starts. If you open the Main.qml file you can find this
code (you can use CTRL+ F to perform a search):

Component.onCompleted: {
//some code... omitted for shortness

}

All the code placed inside that block will be executed when the event onCompleted is raised. In this case each time
the application starts, because the above code is placed inside the QML Page component. But, the onComplete event
is raised for any other component, so that can be used to initialize it instead of the application.

For example:

Label{
id:myLabel
width: units.gu(10)
Component.onCompleted: {

myLabel.text = /* get his value from the database */
}

}

When the onComplete event of the Label component is raised (ie: when is drawn), is executed the code that initialize
the Label (e.g. loading the text to display from a database or other source). In general, the onComplete event is used
to perform some initialization tasks at application or single component level.

82 Capítulo 7. QML App - Database access

Qt Programming Course Documentation, Versión 1.0

In our specific case, at onComplete event of the application, are performed two operations:

1. Database and tables creation (we’ll talk about that in the next section).

2. Inserted default values (ie: the ones shown in the configuration dialogue shown at first start-up).

Now, someone could say: «. . . we don’t want perform that operations at each application start !» Right, to prevent this,
the solution adopted is the use of Settings component. It provides persistent application settings (ie. user preferences
or other customizations to be persisted on a configuration file).

In our Main.qml we have:

Settings {
id:settings
/* flag to show or not the App configuration pop-up */
property bool isFirstUse : true;

}

It declare a boolean property named isFirstUse initialized to true. After the first initialization operations, inside the
onComplete management block, is set to false. With this solution, next time the configuration dialogue will be not
shown and the database initialization will be skipped.

To distinguish the first start form the other ones, we use an if check, so that the decision logic is the following:

Component.onCompleted: {
if(settings.isFirstUse)
{

//create database, insert default data
}else{

//if necessary do something else
}

}

But, where are saved the Setting values (ie: our «isFirstuse» flag)? They are saved in a .conf file placed in that folder:

~userHome/.config/<applicationName>/<applicationName>.conf

In our case is weatherrecorder (is the value assigned at the parameter «applicationName» in Main.qml). Feel free
to open that file, is a simple text. Removing it, or setting to true our flag value, at the next application start will be
executed the initialization operations (try it if you want).

Also, note that in the project sources there is a file named Settings.qml. It must contains all the flags/variable to be
stored in the weatherrecorder.conf file. The Settings component can be used to implements any other logic, not only
for the use case described here.

After the configuration saving the home page of the application is the following:

7.2. The sample application: functional presentation 83

Qt Programming Course Documentation, Versión 1.0

Application
home page

The user interface and his use is quite simple, so that we omit his description. Before continue we suggest to try it to
get more confidence with the application behaviour. Just some notes about the header bar of the application that could
be useful for future applications. We can see two «action» bars: one in the upper right corner and another in the upper
left one.

The left one is named leadingActionBar, the one on the right is named trailingActionBar. Look in the Main.qml source
code and his code comments to know how are implemented (perform a search in that file with a CTRL+F).

In the next sections, we’ll look at the chapter focus: the database access from a QML + JavaScript application.

7.3 Introduction at the Database access

As said before, we don’t use U1Db-QT API but QtQuick.LocalStorage object to perform the database access. The
database type used by Ubuntu Touch (Ubports) is SQLite a file based database that support SQL as query language. To
use it from a QML application are not necessary installations or configurations: everything is provided by QML and
Ubuntu SDK.

Our database access logic is contained in the file named Storage.js (there is no naming convention for that file, you
can use another one or use DAO pattern if you prefer). The following examples are taken from that file.

The QtQuick.LocalStorage module must be imported in any QML file that need it, using this statement:

84 Capítulo 7. QML App - Database access

https://www.sqlite.org

Qt Programming Course Documentation, Versión 1.0

import QtQuick.LocalStorage 2.0

Is also necessary import the JavaScript file containing the database access functions (Storage.js in our case):

import "Storage.js" as Storage

This is the import syntax to use any JavaScript from QML file, not only for our sample. To invoke the functions
contained in Storage.js is used the declared alias Storage. Is suggested use a name similar at the JavaScript file for the
alias. Remember that alias names MUST have the first letter in upper Case.

7.4 The Database interaction

Follow the description of the database operations performed by our application (see Storage.js file for the full code).

7.4.1 Database and table(s) creation

In any QML application that need a database, the first operation to be performed is the database and table(s) creation.
This operations (like any others) require a connection at the physical database. The connection is created with the
QTquick.LocalStorage object and usually is a best practice create an utility JavaScript function that return a reference
to it, like this:

function getDatabase() {
return LocalStorage.openDatabaseSync("weatherRecorder_db", "1.0",

→˓"StorageDatabase", 1000000);
}

For more details about the API openDatabaseSync parameters see: http://doc.qt.io/archives/qt-5.5/qtquick-
localstorage-qmlmodule.html (we omit it for shortness). Before perform any database operation is necessary obtain a
connection with it. For this purpose, the above function can be re-used in any other JavaScript function that need the
database (See Storage.js file).

When a connection is obtained, is possible execute a database SQL query. Note: Database connections are automati-
cally closed during JavaScript garbage collection (a cleaning process executed by JavaScript engine to free memory).

Let’s see the database table creation code (we omit the full code to have a compact view. See the source file for details):

/* create the necessary tables */
function createTables() {

var db = getDatabase();
db.transaction(
function(tx) {

tx.executeSql(' < SQL Create statement 1 > ');
tx.executeSql(' < SQL Create statement 2 > ');

});
}

Note: as first thing, is called the getDatabase() function the return a database connection. Like the above code, each
time we need to perform a database query (ie any C.R.U.D. operation) is necessary open a transaction that is passed at
the callback function containing the SQL statements to run.

If the callback function throws exceptions (ie: an error), the transaction is rolled back (a ‘transaction’ is a set of
operations that must be executed with success, if one of them fails is executed an undo to restore the status before the
execution).

7.4. The Database interaction 85

Qt Programming Course Documentation, Versión 1.0

For our example application, in the createTables() function are created two tables: one to store temperature values and
one for the configuration parameters. No foreign keys are used.

For configuration table the creation SQL code is:

CREATE TABLE IF NOT EXISTS configuration(id INTEGER PRIMARY KEY AUTOINCREMENT,
param_name TEXT, param_value TEXT)

For temperature table is:

CREATE TABLE IF NOT EXISTS temperature(id INTEGER PRIMARY KEY AUTOINCREMENT, date
→˓TEXT, temperature_value REAL)

(The above code is the one placed inside the < SQL Create statement > placeholder).

Obviously, the declared data-type of the table columns are the ones supported by SQLite database (the type «date» is
not supported, so that is declared as TEXT). Note the use of a field named «id» and marked as Primary key (PK) in
the two tables.

That field is flagged as AUTOINCREMENT so that each time a new record is inserted in the table his value is automa-
tically incremented by SQLite. The use of an «autoincrement» field as PK is not mandatory if there are field(s) that
can identify only one record in the table (we choose to use it to provide a further useful feature of SQLite).

After the execution of createTables() function the SQLite database file is created and two tables are inserted.

We have said that SQLite is a file based database; but, where are placed our database files? The location depends on
the application name. The general full path is:

/<home-folder>/.local/share/<applicationName>/Databases/

where is the values provided in the applicationName parameter in Main.qml:

applicationName: "weatherrecorder"

So that, our database is placed at:

/<home-folder>/.local/share/weatherrecorder/Databases/

On Ubuntu Touch (UBports) systems is /home/phablet/ on Desktop systems replace ‘phablet’ with the name of the
logged in user (type the command whoami in a shell to know his name if you are not sure).

That folder contains two files: a .sqlite and a .ini one. The database file is the one with .sqlite extension (the name is an
unique id created by QTQuick.LocalStorage). The .ini file is a file descriptor associated at the .sqlite one. Don’t worry
about their strange names, is not necessary remember or manage them.

To see our two tables and perform SQL query, open the .sqlite file with a graphic interface like Sqliteman available in
the «Ubuntu software Center».

If you open the database file with Sqliteman you got a view like this one:

86 Capítulo 7. QML App - Database access

https://sourceforge.net/projects/sqliteman/

Qt Programming Course Documentation, Versión 1.0

Application
source tree

On the left side we can see the tables found in the database (»configuration» and «temperature») with their columns.
In the upper right text area we can execute some SQL statements. For example, write this one and press the Play icon
in the menu bar:

select * from configuration;

The result is the content of the configuration table (ie: our configuration parameters provided at the first application
start-up). If you right click on table name is possible perform some administration tasks on the table (add or edit
column, delete the table and so on).

Obviously any modification made with Sqliteman affect the application that uses the database (e.g.: if a table is dropped
our application will crash because is necessary modify the application).

In QML + JavaScript development, Sqliteman (or any other similar tools) is used only for checks purpose, like running
SQL extraction statements or data insertion/editing. For example to insert sample data or correct wrong ones. We’ll
talk about SQL statements in the next sections.

7.4.2 Research operation

With a research operation we look inside the database table(s) for a specific record(s) matching some search criteria.
That operation is done with a SQL select query that return a set of zero or N table rows matching the criteria (for us
record and table row are synonym). The returned set is usually identified with the result-set name.

An example of research, can be found in the function named getTemperatureValueByDate in Storage.js file. That
function is invoked when the user perform a search operation in the user interface passing as input the date for which
want to know the temperature value.

Here the JavaScript function that perform the search:

function getTemperatureValueByDate(date){

(continué en la próxima página)

7.4. The Database interaction 87

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

var db = getDatabase();
var targetDate = new Date (date);

/* return a formatted date like: 2017-04-30 (yyyy-mm-dd) */
var fullTargetDate = DateUtils.formatDateToString(targetDate);
var rs = "";

db.transaction(function(tx) {
rs = tx.executeSql("SELECT temperature_value FROM temperature t where date(t.

→˓date) = date('"+fullTargetDate+"')");
});

/* check if value is missing or not */
if (rs.rows.length > 0) {

return rs.rows.item(0).temperature_value;
} else {

return "N/A";
}

}

Note at the beginning the getDatabase() function (described in the previous section) and how we can invoke functions
contained in another JavaScript file (look at the statement DateUtils.formatDateToString(targetDate);). The technique
adopted to execute a SQL query is the same used for the table creation: create a transaction and inside the callback
function insert SQL statements.

The above example show how to manage the results returned by the SQL query. Is used a JavaScript variable named rs
that act as an handle to the result-set informations. The access at the records/rows must be performed with the built-in
field named rows (a keyword name). It is a pointer at the set of returned records used to access at a specific one or
iterate over all the records).

For example:

rs.rows.item(0).temperature_value;

get access only at the first record of the returned result-set (note: the count is zero-based) and from it take the value of
table column temperature_value. We can do that because we have executed a select query; using other SQL statements
(see following sections) the returned information will not be a set of table records but a simple number.

To iterate over the full result-set records, for example to print the temperature_value, this JavaScript code must be
used:

for(var i = 0; i < rs.rows.length; i++) {
console.log("Temperature found:"+ rs.rows.item(i).temperature_value);

}

where console is a built-in object used to print messages on the console (is similar at System.out.println(»a message»)
in Java).

7.4.3 Update operation

The update operation is performed with a SQL update query. An example of update is the updateTemperature JavaS-
cript function used to update an already stored temperature value.

function updateTemperature(date,tempValue){
var db = getDatabase();

(continué en la próxima página)

88 Capítulo 7. QML App - Database access

Qt Programming Course Documentation, Versión 1.0

(proviene de la página anterior)

var fullDate = new Date (date);

/* return a formatted date like: 2017-09-30 (yyyy-mm-dd) */
var dateFormatted = DateUtils.formatDateToString(fullDate);
var res = "";
db.transaction(function(tx) {

var rs = tx.executeSql('UPDATE temperature SET temperature_value=?WHERE date=?
→˓;', [tempValue,dateFormatted]);

if (rs.rowsAffected > 0) {
res = "OK";

} else {
res = "KO";

}
}

);
return res;
}

In the above example is shown another use of the query result-set. The returned value is a number NOT a set of
record(s), due to the facts that we have executed an SQL update query that return only the number of table row(s)
updated. That value is contained in the field named rowsAffected (is a fix name you can’t change it). The above
JavaScript function return a string message whose value depends on rowsAffected value. Is also possible return the
rowsAffected value without any decision logic; the choice depends on the logic to implement.

7.4.4 Insert operation

To insert a new record/row in a table is used a SQL insert statement. In our use case we perform that operation when a
new temperature value is inserted:

/* Insert a new temperature value in the give date */
function insertTemperature(date,tempValue){

var db = getDatabase();
var fullDate = new Date (date);
var res = "";
var dateFormatted = DateUtils.formatDateToString(fullDate);

db.transaction(function(tx) {
var rs = tx.executeSql('INSERT INTO temperature (date, temperature_

→˓value) VALUES (?,?);', [dateFormatted, tempValue]);

if (rs.rowsAffected > 0) {
res = "OK";

} else {
res = "Error";

}
});

return res;
}

The logic and the returned value are similar at the update operation, except for the SQL statement executed.

7.4. The Database interaction 89

Qt Programming Course Documentation, Versión 1.0

7.4.5 Delete operation

The last operation that can be performed is the the delete one. For example, this operation is executed when the user
want delete all the saved temperature values, pressing the trash icon in the menu bar. This is the JavaScript function
used:

/* Remove ALL the saved Temperature values NOT the tables. Return the number of rows
deleted */
function deleteAllTemperatureValues(){

var db = getDatabase();
var rs;
db.transaction(function(tx) {

rs = tx.executeSql('DELETE FROM temperature;');
});

return rs.rowsAffected;
}

In this case we want to mark that rowsAffected is the number of deleted table rows and that value is returned by the
JavaScript function, without any decision logic. For example, the caller of the function can assign it to a QML Label
component to be displayed or use it for a different purpose.

7.5 Conclusions

We have shown how to create from scratch a SQLite database and how to insert and retrieve data using QML +
JavaScript. Also was demonstrated how can be used the onComplete event and how to save user preferences or custom
values with the Settings object. The provided sample code and the solutions proposed can be reused as base for a
custom application or improve the sample one.

We invite to modify the source code to clarify some possible doubts (this is the best solution to understand and improve
your knowledge). Also, take a look at the comments placed inside the source code.

In the next chapter we’ll talk about charts. We will see how to create a chart displaying our saved temperature values
using QChats.js library.

7.6 References

Here some link to deepen some arguments introduced in this chapter:

For SQL language: https://www.w3schools.com/sql/sql_intro.asp only the syntax for the base statements: insert,
update, delete, select, create.

For SQLite: http://www.sqlitetutorial.net/

For QML API: https://docs.ubuntu.com/phone/en/apps/qml/index the official reference for Ubuntu Touch docu-
mentation.

7.7 People who have collaborated

Fulvio Russo: author

Miguel Menéndez: revision of the chapter in English. Translation into Spanish.

90 Capítulo 7. QML App - Database access

CAPÍTULO 8

QML App - Charts

8.1 Introduction

The purpose of this chapter is show how to draw charts from QML + Javascript applications for Ubuntu Touch (UB-
Ports).

8.2 Requirement

To follow this chapter is required an Ubuntu SDK IDE configured with a «Desktop Kit», a knowledge of QML and
Javascript. For more informations about environment configuration you can look at the beginning of this course.

Is also necessary a base knowledge of SQL language and how to access at a SQLite database from QML. If the last
requirements are missing you can get them from the dedicated chapter of this course.

8.3 Premise

This chapter uses as sample application the one created in the previous chapter about QML and database access. Just
for quick summary, that sample application was titled «WeatherRecorder» and was designed to save and manage the
daily temperature values for a favourite city.

Now, in this chapter, we want improve that application adding an analytic feature: display the monthly temperature
values with a chart.

8.4 Charts with QML

The presented solution uses the open source Javascript library Chart.js as drawing library which uses the new HTML5
elements. To use it form QML is necessary a «binding» library placed in the middle between Charts.js and the QML

91

http://www.chartjs.org/

Qt Programming Course Documentation, Versión 1.0

code. That binding is provided by another open source library named qchart.js that define a custom QML Component
representing a chart that wrap Chart.js object.

Thanks to Jwintz, the author of qchart.js, for his great job! But don’t worry, we don’t need to manage any low level
details about that.

8.5 Chart support configuration

If you import our sample application into Ubuntu SDK IDE, the following configuration steps can be skipped. They
must be executed if you are creating a new QML application from scratch and you need chart support.

To draw charts from our QML application is necessary include two files (you can find all the necessary files from
https://github.com/jwintz/qchart.js):

8.5.1 Qchart.js

Is the Javascript drawing library containing the core functions to draw the chart, calculates the axis scales and so on. It
is a version of Chart.js library already bundled with the «qchart.js» one (with maybe with some little patches). To use
it is necessary this import statement:

import "QChart.js" as Charts

Note: the above import syntax is the same necessary to use any other Javascript file from QML.

8.5.2 QChart.qml

Define the new QML component (named «Qchart») to be used in our QML code to draw a chart. The use is made with
a block like this:

QChart {
//chart configuration options

}

As last step, is necessary include that files in the .qrc file (a special project file that list all the files that composing the
project). Now the QML application is ready to draw charts.

8.6 Introduction at the sample application

As noted above, we will use the application presented in the chapter dedicated at QML and database access and we
will improve it. To keep separated the source code of the two applications, and prevent confusion, for this chapter
there is a separated application named «WeatherRecorderChart» created using the previous one «WeatherRecorder»
as base.

If you import the «WeatherRecorderChart» project into Ubuntu SDK IDE in the project source tree you should get a
view like this:

92 Capítulo 8. QML App - Charts

https://github.com/jwintz/qchart.js

Qt Programming Course Documentation, Versión 1.0

Application source tree

If you run the application for the first time (pressing the green «Play» icon) you get that application page:

8.6. Introduction at the sample application 93

Qt Programming Course Documentation, Versión 1.0

Weather
Recorder Configuration

When you have accepted (or updated) the proposed configuration you get the new Application home page:

94 Capítulo 8. QML App - Charts

Qt Programming Course Documentation, Versión 1.0

Weather
Recorder new design

Note: next application start-up the configuration windows will not shown (we have described what happen at applica-
tion start-up in the previous chapter).

Important: the new application (like the old one) uses a SQLite database to save the temperature values. But, the
location of the database files is different, due to the fact that «applicationName» field in Main.qml have a different
value (please, see chapter about database access for info about database location).

In comparison at the other sample application «WeatherRecorder» we note a new section at the end of the page named
«Analytic section». If you press the green button «Chart» you get a new page that allow you to choose a target month
and then display his temperature values with a bar chart like this:

8.6. Introduction at the sample application 95

Qt Programming Course Documentation, Versión 1.0

Analytic
Page

On the right there is a simple chart legend that show the values used to draw the chart. If no values are found, the chart
will be empty (this is the case when all the temperature values are missing for the chosen month). Insert some values
and retry to redraw the chart.

8.7 New application features in details

The previous section have already shown the new chart page added at our application. Here, we want describe in more
details the changes added.

In the user interface there is new section, whose source code can be found in Main.qml file. This section is composed
of two new QML Row components with id «chartSectionHeader» and «chartRow» (try to search them with CTRL +
F) appended at the ones already existing.

To have a new separated page for the chart, and his legend, we have introduced a new QML Component: PageStack.
Very quickly, it is a component used to manage the navigation between pages, that works like a stack: the page on the
top is the one showed. To add/remove a page from the stack there are the methods «push» and «pop».

As first thing, when the full application starts, is necessary push on the PageStack the first page to show, this is
done using the «onComplete» event of the PageStack component raised when it is created (see the previous chapter
dedicated a database access with QML for more information about the use of «onComplete» event).

96 Capítulo 8. QML App - Charts

https://docs.ubuntu.com/phone/en/apps/api-qml-current/Ubuntu.Components.PageStack

Qt Programming Course Documentation, Versión 1.0

That initialization is made with this statements:

// Listing 01
PageStack {

id: pageStack

/* set the firts page of the application */
Component.onCompleted: {
pageStack.push(mainPage);

}

// a set of Page components
}

With the above code is pushed on the top of the stack the QML page with id «mainPage». That identifiers is the one
of the home page shown on application start. Try to search that identifiers in the code.

Now, we can look at the entry point of our chart page: the «Chart» button, his source code (form Main.qml) is the
following:

// Listing 02
Button {

id:showCahrtButton
text: i18n.tr("Chart")
width: units.gu(14)
color: UbuntuColors.green
onClicked: {
pageStack.push(chartPage)

}
}

When the user press the button (i.e.: the «onClick» event is raised) a new page is pushed on the top of our PageStack
component and will be shown replacing the previous one. Which is the page shown? Is the one with «chartPage»
identifiers. Try a «CTRL + click» on that identifiers passed at the «push» function (or try or search with CTRL + F).

Doing this you will be redirect to the following code:

// Listing 03
Component {

id: chartPage
ChartPage{}

}

That statement, define and import a custom component whose source code is contained in the ChartPage.qml file (try
a CTRL+Click on ChartPage{} to open that file).

(Note: listing 03 shows how a QML Component, defined in an external file, can be imported into another QML file).
In our case the imported QML Component is the Page whit the id «chartPage».

In ChartPage.qml we find the page implementation:

// Listing 04
Page {

id: chartPage

//... other code omitted for shortness
}

8.7. New application features in details 97

Qt Programming Course Documentation, Versión 1.0

8.8 The Chart page in details

Now, that the navigation flow is explained, we can focus on the page that create the chart, whose source code is
contained in ChartPage.qml file.

Note: we omit explanations of the header part of that page because contains components already presented in the
previous chapters of the course (DatePicker, Buttons. etc.).

Our description starts when the user press the «Show Chart» button. Here the code executed when the button «onClick»
event is raised:

// Listing 05
onClicked: {

/* extract the year, month, day from the variable ‘targetDate’ */
var dateParts = chartPage.targetDate.split("-");
/* build a JS Date object using string tokens (month is 0-based) */
var date = new Date(dateParts[0], dateParts[1] - 1, dateParts[2]);
/* calculates first and last day of the month */
var firstDayMonth = new Date(date.getFullYear(),date.getMonth(), 1);
var lastDayMonth = new Date(date.getFullYear(), date.getMonth() + 1, 0);
/* set the data-set at the chart and make visible the chart and legend */
temperatureChart.chartData = ChartUtils.getChartData(firstDayMonth,lastDayMonth);

/* make visible the chart and the legend */
temperatureChartContainer.visible = true;

}

When the user choose a month with the DatePicker, that value is assigned at the Javascript variable named «chartPage»
as a formatted value yyyy-mm-dd (see: the Component with id «popoverTargetMonthPicker»).

After a splitting of that valu (see «listing 05», is created a Javascript Date object to use his native methods to calculate
the first and last days of the chosen month (this calculation must be done at runtime because we don’t know the user
choice).

The calculated first and last days are passed as input at the Javascript function «getChartData» that create the XY
data-set for the chart:

// Listing 06
temperatureChart.chartData= ChartUtils.getChartData(firstDayMonth,lastDayMonth);

That returned data-set is assigned at the field named «chartData» of the QML Component with id «temperatureChart»,
which is our chart declared as follow:

// Listing 07
/* The monthly temperature chart */
QChart{

id: temperatureChart;
width: parent.width
height: parent.height;
chartAnimated: false;

/* for all the options see: QChart.js */
chartOptions: {"barStrokeWidth": 0};

/* chartData: set when the user press 'Show Chart' button*/
chartType: Charts.ChartType.BAR;

}

98 Capítulo 8. QML App - Charts

Qt Programming Course Documentation, Versión 1.0

Listing 07 show the declaration of the chart QML Component defined by the Qchart.js library described at the begin-
ning of the chapter. Note ho we specify that we want a Bar chart.

8.9 Chart creation in details

What happen at QML components level was described in the previous sections. Now, we want study the Javascript
code that build the chart data-set.

All the functions used to create our temperature chart, are contained in ChartUtils.js file (imported in our QML file).
Note: ChartUtils.js file was created for this application, is NOT owned by any library.

Let’s look at that file.

The entry point is the function: function getChartData(fromDate, toDate) invoked when the «Show
Chart» button is pressed and the first/last days of the month are calculated.

That function perform the following steps:

8.9.1 Step 1

Calculate the amount of days contained in the chosen month (i.e. 28 – 31) using the function «getDifferenceInDays»
contained in DateUtils.js file:

// Listing 08

/* the amount of days for the target month (e.g.: 30) */
var monthDays = DateUtils.getDifferenceInDays(fromDate,toDate);

8.9.2 Step 2

Prepare a key-value associative Javascript Array whose size is the amount of days (this will be the base for our chart
data-set). The key part of the Array is a date in the target month, the associated value is the temperature. All the entry
values are initialized to 0 (zero). This is necessary to manage the cases when a temperature value is missing (e.g. the
user forgot to insert it). The missing temperature values are the ones shown with «N/A» in the user interface.

Note: set them to «zero» is only a choice, was also possible set a different default value. This is the code that perform
the operations described in ‘step 2’:

// Listing 09
function prepareEmptyDataset(fromDate, monthDays){

/* Init an empty associative array */
var xyDataSet = {};
for(var i=0;i < monthDays+1; i++) {

/* initialize to zero the temperature value for the date */
xyDataSet[DateUtils.addDaysAndFormat(fromDate, i)] = 0;

}
return xyDataSet;

}

8.9. Chart creation in details 99

Qt Programming Course Documentation, Versión 1.0

8.9.3 Step 3

Extract from the SQLite database the temperature values for the chosen months, then update the key-value Javascript
Array prepared in the previous step. (for details about SQLite database access from QML we invite you to read the
dedicated chapter previously published).

This activity is done in the following Javascript function: function updateXYdataset(fromDate,
toDate, xyDataSet) (we omit the full code for shortness)

When the update of the Array is finished, our chart data-set will contains a not zero temperature value only for the
days updated by the user. For the others ones remain the default value set during the initialization. We have now the
XY data-set for our chart.

8.9.4 Step 4

The last step is extract the single X and Y values to have two distinct sets. This is done with to dedicated Javascript
functions:

function getXaxisValue(xyDataSet): extract the keys of the Javascript array, they are our X values

function getYaxisValue(xyDataSet): extract the values form the array, they are our Y values.

This split is necessary because the Javascript Object accepted by the chart library require to separated sets (see step 5).

8.9.5 Step 5

Create this Javascript object to be assigned at our QChart QML component (declared in listing 7)

// Listing 10
var ChartBarData = {
labels: < our X axis values extracted at step 4 above>,
datasets: [{
fillColor: "rgba(220,220,220,0.5)",
strokeColor: "rgba(220,220,220,1)",
data: < our Y axis values extracted at step 4 above>
}

]
}

The assignment to QChart component is done with the following statement temperatureChart.chartData =
ChartUtils.getChartData(firstDayMonth,lastDayMonth); where «temperatureChart» is the iden-
tifier of our QChart Component (listing 7) and «chartData» is his field to be initialized with an object like the one in
listing 10.

Note: In other cases, when the chart data-set is already known or doesn’t depends on runtime choices (i.e. the tar-
get month in our case), the setting of the «chartData» field (of QChart component) can be done when the QChart
component is declared (i.e. in listing 7) instead of after a processing.

8.10 The chart legend

On the right of the chart is drawn a simple legend filled with the X-Y values used to draw the chart. It is not mandatory,
we insert it to completeness and to give at the reader new ideas about possible future customizations.

That legend is created in the ChartPage.qml using a ListModel QML Component that act as a container for the values
to display. That model is filled whit the following function (see ChartUtils.js):

100 Capítulo 8. QML App - Charts

Qt Programming Course Documentation, Versión 1.0

// Listing 11

/* fill the Listmodel used to create the Chart legend */
function getChartLegendData(xyDataSet){
customRangeChartListModel.clear();
for(var key in xyDataSet) {
customRangeChartListModel.append({"date": key,"temp":xyDataSet[key]});

}
}

It perform an iteration on the full XY data-set and extract the values to place (as Javascript Object key-value) in the
ListModel. We invite to read the official documentation for more information about ListModel. We choose to not give
more details because that arguments are out of the Chapter purpose.

To show the values contained in the ListModel is used an UbuntuListView Component. The implementation and the
configuration of our UbuntuListView can be found in ChartPage.qml file. Here a code snapshot with some omission
for shortness:

// Listing 12
/* ListView that display the values in the legend */
UbuntuListView {

id:chartLegendListView
anchors.fill: parent

/* disable the dragging of the model list elements */
boundsBehavior: Flickable.StopAtBounds
model: /* id of the ListModel containing the data */

delegate:
/* ‘delegate’ is the component that define the layout
used to display the value from the ListModel */
Component{

id: customReportChartLegend
Rectangle {

id: wrapper
height: legendEntry.height
border.color: UbuntuColors.graphite
border.width:units.gu(0.5)

Label {
id: legendEntry
/* ‘key’ and ‘temp’ are the key used to
store date and temperature values in the
ListModel */
text: date+" : "+temp
fontSize: Label.XSmall

}
}

}
}

Only a couple of tips about how UbuntuListView works: it receive in input (with the field named «model») the List-
Model containing the values to display and a QML component that define the layout used to show them in the page
(field «delegate»). The «delegate» component access at the values in the ListModel using the key values used to store
them (i.e. «date» and «temp» looking at listing 11).

8.10. The chart legend 101

https://docs.ubuntu.com/phone/en/apps/api-qml-current/Ubuntu.Components.UbuntuListView

Qt Programming Course Documentation, Versión 1.0

8.11 Conclusions

We have shown ho to draw charts from an QML + Javascript application using values from a SQLite database. To
reach that we have made some choices, like to use a Bar Chart or use «Zero» as default value in case of missing value.
Maybe, our choices and some details can be disputable but our focus was provide at the reader a knowledge about
drawing charts with QML and suggest new ideas for future applications.

As exercise, the reader can try the use of different chart chart type (e.g. a line bar) or add another chart about pressure
values for the city. . .

We invite the reader to look at the application source code (and his comments) for more details omitted for shortness
in this chapter.

8.12 References

Here some useful links about the arguments explained in the chapter:

Ubuntu touch QML API

The repository of Qchart.js library

8.13 People who have collaborated

Fulvio Russo: author

Miguel Menéndez: revision of the chapter in English. Translation into Spanish.

102 Capítulo 8. QML App - Charts

https://docs.ubuntu.com/phone/en/apps/api-qml-current
https://github.com/jwintz/qchart.js

CAPÍTULO 9

Compilación de la documentación

El curso de programación de Qt ha evolucionado con el tiempo. Inicialmente empezó como un curso enfocado a
Ubuntu Touch y poco a poco se ha ido abriendo a las aplicaciones de escritorio. Para hacerlo más sencillo de seguir,
junto a otras razones, modificaré un poco la estructura del curso.

Estos cambios afectan tanto a la herramienta que usará el curso, Sphinx, como a la estructura interna de la documenta-
ción. En los capítulos se aume que el usuario usa el SDK de Ubuntu. Éste SDK no está disponible actualmente y existen
muchas alternativas que corrigen sus problemas. Inicialmente usaré como base el escritorio, y haré los comentarios
oportunos para las partes que son exclusivas de Ubuntu Touch.

Aunque pueden parecer muchos cambios, realmente no son muy radicales. El código y la lógica son prácticamente los
mismos. Sólo cambian algunos elementos relacionados con Qt»

Aunque continuaré trabajando en el curso a lo largo del mes, subiré la documentación el último viernes de cada mes.
En ese momento compilaré la documentación y la subiré a la Web de InnerZaurus.

9.1 Instalación

Las instrucciones se aplican a Ubuntu y sus distribuciones derivadas. Los paquetes que se tienen que instalar son:

build-essential

Archivos de Sphinx y Python 3

Comandos

sudo apt-get install build-essential
sudo apt-get install python3-sphinx sphinxsearch python3-pip

Extensiones para Sphinx:

pip3 install sphinx-intl
pip3 install --upgrade recommonmark
pip3 install sphinx_rtd_theme

103

Qt Programming Course Documentation, Versión 1.0

Para compilar la documentación (Inglés):

make html

Para compilar una traducción (Español):

make gettext
sphinx-intl update -p build/gettext -l es
make -e SPHINXOPTS="-D language='es'" html

104 Capítulo 9. Compilación de la documentación

CAPÍTULO 10

Ubuntu SDK (Legacy)

10.1 Introduction

In the previous chapter we have seen an introduction to the programming course with Ubuntu Touch. The next step is
to prepare the development environment. When programming in any language a SDK (Software Development Kit) is
used. The SDK consists of a set of tools that process the source code and generate the executable for the platform that
is being used. Ubuntu Touch is not an exception and also has its own SDK.

Applications in GNU / Linux are in repositories. The repository contains a set of applications that can be easily
installed. On some occasions there are applications that are not in the official repositories. For these cases, it is possible
to use personal repositories, also known as PPA repositories. The Ubuntu SDK is in a PPA repository that will have to
be added to the system in order to be installed. By this limitation, it can only be programmed on distributions that can
work with PPA repositories, that is to say, all the distributions that use Ubuntu as a base. If the distribution uses RPM
packages, as in the case of OpenSuse or Fedora, alternative measures will have to be taken.

There are two other ways to do this: create a Live USB with Ubuntu or use a virtual machine that has Ubuntu installed.
The first one is simpler and works reasonably well if the USB memory is fast. The second way is more comfortable
since it does not depend on a USB stick, but requires a more powerful computer to run the virtualized operating system.
I will not go into how to create a Live USB or virtual machine. Anyone in one of these two cases can ask in the mailing
list and I will guide him with the most important steps.

My development environment is:

Ubuntu 16.04 LTS.

Aquaris E4.5 with OTA-14.

Aquaris E5 HD with OTA-14.

Aquaris M10 FHD with OTA-14.

It is possible that in other distributions there are some intermediate steps that need to be done to configure the SDK. If
that is the case you can indicate it.

105

Qt Programming Course Documentation, Versión 1.0

10.2 Installing the Ubuntu Touch SDK

Installing the SDK is very simple and should not take more than a couple of minutes. It is advisable to have the system
updated before you start. For the case of Ubuntu, this can be done with the commands:

sudo apt-get update && sudo apt-get upgrade && sudo apt-get dist-upgrade

You use sudo because package installation requires administrator permissions. The first command updates the list of
repositories. If there is no error, the second command is executed, which is responsible for updating the applications.
Finally the third command updates some operating system packages that are not updated by default.

Add the Ubuntu Touch SDK repository with the command:

sudo add-apt-repository ppa:ubuntu-sdk-team/ppa

Add
Ubuntu SDK PPA

The repository information will be displayed. You can continue by pressing the ENTER key.

106 Capítulo 10. Ubuntu SDK (Legacy)

Qt Programming Course Documentation, Versión 1.0

PPA
Info

All repositories have a signature that assures us that the installed packages come from the repository. This signature is
added to the system and will be used when repository packages are installed.

PPA
Key

After adding a repository it is necessary to update the information of the packages that it contains. You can do this

10.2. Installing the Ubuntu Touch SDK 107

Qt Programming Course Documentation, Versión 1.0

with the command:

sudo apt-get update

Everything is ready. The last step of this section is to install the Ubuntu Touch SDK.

sudo apt-get install ubuntu-sdk

Ubuntu
SDK Packages

Although only one package (ubuntu-sdk) is put in the command, all the dependencies of that package are automatically
installed, so it works without problems. The installation may take a while depending on the Internet connection. It”s a
good time to let the computer work and have a good coffee.

10.3 Setting up the Environment

The Ubuntu Touch SDK includes tools to generate applications and an editor to make programming easier. The tools
take the source code of the application and process it. If the target is a computer there is no problem. Instead, if the
target is a device that uses Ubuntu Touch, we are in a different scenario. These devices use the ARM architecture,
which is different from the one used by the PC. To generate the executable you have to use a cross-compiler that runs
in a container (LXD in the latest versions of the SDK).

To work with LXD you have to add the user that is used on the computer to the group lxd.

sudo usermod -a -G lxd user

108 Capítulo 10. Ubuntu SDK (Legacy)

Qt Programming Course Documentation, Versión 1.0

Usermod

After writing the command you have to close the user”s session and login again. You can start working with this small
modification. To start, we need to run the ubuntu-sdk-ide application, it can be launched from the desktop start menu
or by pressing ALT + F2 and typing its name. The first time it’s launched, a screen appears asking in which lxd has to
be configured. Just press ‘Yes’ to generate the default configuration.

Container Initialization

10.3. Setting up the Environment 109

Qt Programming Course Documentation, Versión 1.0

Container
Generation

If the user is not in lxd group, the following error shown in the screen will be output. In that case, it is sufficient to
logout and login again. When launching the IDE of Ubuntu Touch should give you no errors.

LXD
Error

10.4 Configuration Wizard

The first screen of the wizard is an introduction to Qt Creator. To continue, click the ‘Next’ button.

110 Capítulo 10. Ubuntu SDK (Legacy)

Qt Programming Course Documentation, Versión 1.0

Wizard
Intro

Although the course is focused on mobile devices such as phones or tablets, you will also apply the knowledge learn
to create desktop applications. Each of these devices has associated a kit, a set of tools, which are based on the code
that is programmed and generates the necessary files for each device.

10.4. Configuration Wizard 111

Qt Programming Course Documentation, Versión 1.0

Kits
Creation

Click the ‘Create new Kit button’. The first option must be selected.

112 Capítulo 10. Ubuntu SDK (Legacy)

Qt Programming Course Documentation, Versión 1.0

Kit
Desktop

In the list there are several kits to download. Ubuntu Touch is currently based on Vivid so you have to select that
option.

Kits
Versions for Desktop

Finally write the name of the kit.

10.4. Configuration Wizard 113

Qt Programming Course Documentation, Versión 1.0

Kit
Name for Desktop

When you complete the last step, you return to the initial screen of the kits. Press the ‘Create new Kit’ button again
and repeat the process by selecting Ubuntu Device.

Kit
Device

With this kit there are more options to choose from. Phones or tablets that use Ubuntu Touch work with the armhf
architecture. In the list you have to select a kit that has that architecture. The version of Ubuntu Touch is Vivid, as in
the previous case. Finally you have to choose 686 or x64 depending on whether the computer uses 32 or 64 bits.

114 Capítulo 10. Ubuntu SDK (Legacy)

Qt Programming Course Documentation, Versión 1.0

Kit
Versions for Device

After pressing the ‘Next’ button, you must write the Kit name.

Kit
Name for Device

At this time it is not necessary to create additional kits.

10.4. Configuration Wizard 115

Qt Programming Course Documentation, Versión 1.0

Kit
List

In the last step of the wizard you can configure the physical devices and the emulator. There are some problems with
the emulator. For now, I recommend not to configure the emulator. Applications can be tested natively on the computer.
For this reason you must uncheck the ‘Create emulator’ box and click on the ‘Finish’ button.

116 Capítulo 10. Ubuntu SDK (Legacy)

Qt Programming Course Documentation, Versión 1.0

Emulators
List

10.5 Hello World

In order to keep the good traditions, the first step is to program a minimal application that allows us to check the correct
operation of the SDK. The application will run on the computer natively and on a tablet. As you will see is quite simple
to do it. Kits are updated frequently. If the following screen appears, all the kits must be marked and updated.

10.5. Hello World 117

Qt Programming Course Documentation, Versión 1.0

Kit
Updates

10.6 Project Creation

Click on the File menu, New file or project. A window will appear with the types of projects that can be used. The user
interface is made with QML which is a scripting language oriented to the creation of graphical interfaces. The logic
of the application can be done with several languages. JavaScript will be used for now. Select the first option and then
click on the ‘Choose’ button.

118 Capítulo 10. Ubuntu SDK (Legacy)

Qt Programming Course Documentation, Versión 1.0

New
Project

You must choose the folder in which the projects will be saved. The project name cannot contain spaces.

Project
Name

Applications need basic information: user and maintainer. All other parameters should be left as they come by default.
It is important to respect the structure in the Maintainer field so that it allows us to continue.

10.6. Project Creation 119

Qt Programming Course Documentation, Versión 1.0

Click
Parameters

You have to select the kits that you want to use. By default the two will be selected in order to run the application on
the computer and on the mobile device.

Project
Kits

The last screen contains a summary of the wizard steps. Click on the ‘Finish’ button.

120 Capítulo 10. Ubuntu SDK (Legacy)

Qt Programming Course Documentation, Versión 1.0

Project
Summary

The project will open automatically.

Project
Opened

10.6. Project Creation 121

Qt Programming Course Documentation, Versión 1.0

10.7 Running the Application on Your Computer

To run the application you have to press the ‘Play’ button in the lower left part of Qt Creator.

Run
App on PC

10.8 Running the Application on a Real Device

Before running the application, it is necessary to configure the device. For testing I have used an Aquaris M10 FHD
tablet with the OTA-14 —although the procedure is the same on the other terminals. Leave ubuntu-sdk-ide open and
connect the device via USB to the computer. To activate the development options, access the System Settings.

122 Capítulo 10. Ubuntu SDK (Legacy)

Qt Programming Course Documentation, Versión 1.0

System
Settings

Click on About.

About

Select Developer Mode. This mode is disabled by default because it allows remote control of the device if it is con-

10.8. Running the Application on a Real Device 123

Qt Programming Course Documentation, Versión 1.0

nected by USB to the computer. Check the box.

Developer
Mode

After a few seconds, a notification must appear with the connection request of the computer.

SSH

124 Capítulo 10. Ubuntu SDK (Legacy)

Qt Programming Course Documentation, Versión 1.0

notification

You have now completed all the steps on the side of the tablet. In the IDE, you must select the tablet as the compilation
target. To do this, click on the button above the Play and select the device we just configured as the destination.

A few seconds after pressing the Play button, the application will appear on the device.

Run
App on Device

The error shown in the following image may appear:

10.8. Running the Application on a Real Device 125

Qt Programming Course Documentation, Versión 1.0

SDK
Error

In the sidebar of Qt Creator you have to click on the ‘Devices’ button. Then click on the device and Kits click on the
‘Remove’ button. Then click on the ‘Create’ button.

126 Capítulo 10. Ubuntu SDK (Legacy)

Qt Programming Course Documentation, Versión 1.0

Ubuntu
Devices

Now you have to associate the Kit back to the Project. Click on ‘Projects’ (on the sidebar), ‘Add Kit’ and select the
Kit that appears in the dropdown.

10.8. Running the Application on a Real Device 127

Qt Programming Course Documentation, Versión 1.0

Kit
Selection

Wait a couple of seconds and select the device as the compilation target. It is important that you try the compilation in
both cases. In the next chapter I will start with the source code and assume that everything works correctly on both the
computer and the test device. If you have any problems you can ask on the mailing list.

10.9 People who have collaborated

Larrea Mikel: revision of the chapter in Spanish.

Cesar Herrera: revision of the English translation.

Joan CiberSheep: revision of the English translation.

128 Capítulo 10. Ubuntu SDK (Legacy)

CAPÍTULO 11

Índices y tablas

genindex

modindex

search

129

	Introducción a Clickable
	Introduction
	Web App - Basic
	QML App - Basic
	QML App - Format
	QML App - Events
	QML App - Database access
	QML App - Charts
	Compilación de la documentación
	Ubuntu SDK (Legacy)
	Índices y tablas

